• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge On-Demand
    • SyBridge Studio
    • SyBridge Digital Platform
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
GET AN INSTANT QUOTE
Home / Resources / When to Use Low-Volume Injection Molding

When to Use Low-Volume Injection Molding

August 26, 2020 by SyBridge Technologies
Low Volume Injection Molding

Originally published on fastradius.com on August 26, 2020

Injection molding is a useful method of production that gives manufacturers the ability to create identical parts in high volumes with consistent quality and characteristics. During production, a pressurized nozzle shoots molten plastic into a durable metal mold designed to let the part cool and be ejected quickly. Once the part is ejected, the press closes and the operation repeats itself. Many everyday plastic items — from combs and bottle caps to car parts and gears — are produced through injection molding.

Historically, injection-molded parts had to be manufactured in large quantities in order to offset high startup costs. A hardened steel mold costs tens of thousands of dollars and can take weeks or months to tool, but over time, its durability allows manufacturers to recoup their investment while also lowering cost-per-part.

However, as markets evolve — evidenced, for example, by the ongoing shift toward custom and small batch products — manufacturers are adapting their operations to take advantage of new, more efficient methods. Low-volume injection molding is one of those methods.

Key benefits of low-volume injection molding

The process of low-volume injection molding eschews hardened steel molds and inserts for softer aluminum ones, which are typically easier and cheaper to make. These molds obviously aren’t as durable as their hardened steel counterparts, but the advantage for manufacturers is that they often don’t need to be when producing parts in low volumes. When used strategically, soft molds can ultimately reduce tooling costs and shorten production schedules.

Typically, low-volume injection molding refers to making parts in quantities of 100,000 or fewer. While that number probably seems high to a layperson, it’s still relatively low compared to high-volume production numbers, which can easily reach tens of millions of parts. While 100,000 isn’t an official cutoff, it serves as a general benchmark for the point at which aluminum molds become less cost-effective than investing in hardened steel molds.

At the same time, hardened steel required for traditional molds demands a significant upfront investment of time and money. However, aluminum and lower-grade steel molds are far less expensive to create and can be produced faster. With these molds, manufacturers can prototype and produce viable parts without having to commit to high minimum orders, while continuing to refine part design and production as needed. This allows manufacturers to begin production sooner, and in many cases, accelerate speed-to-market significantly, thereby reducing the time it takes to see a return on investment.

Injection Molding Materials

Shorter lead times are especially beneficial for smaller product teams on tight budgets, who can now produce parts with relatively low minimum orders while still turning a profit. Furthermore, storing and disposing of excess inventory can quickly become expensive, but low-volume rapid injection molding helps to minimize excess by enabling production teams to manufacture parts only in the quantities required.

In addition to creating opportunities for creating small-batch or custom parts, the rapid injection molding process provides an efficient means of bridge tooling. This allows manufacturing companies to begin tooling hardened steel molds while simultaneously employing aluminum molds to produce parts in the meantime.

Another significant benefit of employing softer injection molds is that they rarely have a detrimental effect on part quality: plastic pieces produced in low volumes are as good as those created via hardened steel molds when proper design considerations are taken into account.

Key design considerations for low-volume injection molding

There are a few important considerations that need to be kept in mind when designing parts for manufacturability at low volumes, including general part complexity, draft, wall thickness, and surface finish.

Typically when you work with aluminum, you do not want to implement side actions or lifters normally associated with complex builds into the tool. While those operations typically cause wear in the tool — softer aluminums cannot withstand such pressure for very long — low-hardness steels like P20 serve as optimal replacement tooling materials.

Draft refers to a taper incorporated into design that makes it easier for a part to be ejected from its mold. Consider a rectangular baking pan — if the pan were truly rectangular, it would prove difficult to remove a cake. However, rounded edges and tapered sides incorporated into the design of the pan allow the cake to easily emerge. This is a principle that holds true when removing injection-molded parts from their molds, as well. All vertical faces should have at least 0.5 degrees of draft, though closer to 2 or 3 degrees is preferable if part design allows. Some complex surfaces may require as many as 5 degrees of draft.

computer screen

The thickness of a component’s walls also needs to be considered, as thicker walls don’t necessarily equate to greater strength or performance — especially when working with thermoplastic materials. Thick cross-sections actually increase the likelihood of parts developing warp or sink during the cooling process, which is why wall thicknesses should typically stay between 0.040 to 0.140 inches (1 to 3.5 millimeters) across the part’s entirety.

Manufacturers can also save on tooling costs and lead time by forgoing unnecessary surface finishes to their molds. If the part’s application does not require an extremely smooth surface — which can involve hand-polishing mold cavities with diamond buffs — there’s probably no need to have it. Using the most cost-efficient finish compatible with a given part’s application is key to lowering production costs and improving production times.

Using low-volume injection molding to your advantage

Injection molding is an incredibly useful manufacturing method often leveraged to create large numbers of identical parts. The high cost of tooling the hardened metal molds means that the parts must be produced at high volumes in order for the project to prove cost-effective. However, developments in manufacturing processes and technology now enable product teams to economically create rapid injection-molded parts in smaller quantities and to provide efficient bridge tooling solutions.

At SyBridge, we’re always striving to do our jobs more efficiently. That means working closely with each of our customers — from design and prototyping through to post-production and fulfillment — to ensure that they receive high-quality parts that are made affordably and delivered on short timelines. Contact us today to discover how we can make your designs come to life.

Category: Knowledge CenterTag: Injection Molding

Related Articles

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

PET

Know Your Materials: Polyethylene Terephthalate (PET)

Acetal-and-Nylon

Know Your Materials: Acetal vs. Nylon

Injection-molding

Advantages and Disadvantages of Injection Molding

SyBridge Studio

SyBridge Technologies Launches SyBridge Studio, an Innovative Application, on the PTC Onshape App Store

PVC

Know Your Materials: Polyvinyl Chloride (PVC)

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (727) 384-3676

Copyright © 2024 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy