• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge On-Demand
    • SyBridge Studio
    • SyBridge Digital Platform
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
GET AN INSTANT QUOTE
Home / Resources / Master the Art of Machining Complex Fixtures With These Insider Tips

Master the Art of Machining Complex Fixtures With These Insider Tips

January 13, 2021 by SyBridge Technologies
machining complex fixtures

Originally published on fastradius.com on January 13, 2021

A fixture is a workholding device, or a tool that holds a part in place while it’s being CNC machined. When the part is simple, workholding is also simple; sometimes, the part can even be held in the machinist’s hand. But when a part is very large or has detailed features on more than one side, it demands more creative solutions.

Universal soft jaws and vacuum tables are two such solutions, but with an especially delicate or complex part, a custom fixture may be necessary. Of course, CNC machining a custom fixture means machining a part just to hold another part; for this reason, it’s generally not recommended except for high volume production runs. While creating a custom fixture requires a significant upfront investment in time and capital, it is likely to generate high ROI if used tens or hundreds of times.

However, as with machining parts with complex geometries, there are key considerations and best practices that can streamline and simplify the process of manufacturing complex fixtures.

The challenges of machining complex fixtures

Parts with complex shapes often demand fixtures with equally complex shapes — but a complex fixture can be almost as difficult to manufacture as the part it’s meant to hold. With fixtures that have complex locating features, machinists may be limited in the ways they can reach and hold the fixture; ideally, this problem should be mitigated by designing the fixture with the machining process in mind.

These key considerations should guide the design and manufacturing process for CNC-machined fixtures:

  • The design of each part should be optimized for manufacturing, with the goal of streamlining the machining process as much as possible.
  • Individual parts should be designed as simply as possible to speed the assembly process. Designers should strive for a single setup for the simplest and least inexpensive parts.
  • Off-the-shelf parts should be used whenever possible. Many companies manufacture inexpensive fixture components, and it’s not advisable to machine a simple component, such as a knob, that’s easily and inexpensively obtained.
  • Prototype early and often. Frequent testing helps identify potential problems early on — and thus address them before it’s too late.

The advantages of creating complex fixtures via CNC machining

Although it can be expensive and time-intensive to create complex fixtures via CNC machining, there are certain advantages to using this manufacturing method. One of the most notable advantages is the ability to machine parts with particularly tight tolerances. CNC machining, which is extremely precise and replicable, can help ensure that there won’t be variability from one fixture to the next.

machine parts with particularly tight tolerances
One of the most notable advantages of CNC machining is the ability to machine parts with particularly tight tolerances.

Another advantage of CNC machining is its ubiquity. As one of the most popular and commonly-used manufacturing methods today, there are countless machine shops in the U.S. and beyond, meaning product teams are unlikely to have a difficult time outsourcing projects to experienced machinists to assist in developing a given fixture.

Finally, the flexibility of CNC machining is worth noting. Unlike other manufacturing methods, CNC machining can be performed with a seemingly endless range of materials, from metals and plastics to wood and foam. Other popular manufacturing methods, such as injection molding and 3D printing, are best-suited to manufacturing solely plastic parts.

Selecting the best-suited manufacturing method

Despite the many benefits of CNC machining, it’s not always the best option for a given fixture — but determining when it is or isn’t the best choice can be difficult. As a general rule, if a fixture consists of many separate, relatively small parts, additive manufacturing may be a better choice than CNC machining.

However, that’s not a hard and fast rule, and identifying individual cases in which additive can help product teams save time and money while creating their complex fixtures can be tricky. That’s why partnering with an experienced design and manufacturing consultancy like SyBridge can help.

SyBridge’s team of expert designers, engineers, and manufacturers come to the table with deep technical knowledge of a range of manufacturing methods, design principles, material selection, rapid prototyping, production, and fulfillment. We don’t specialize in a single process — we’ve mastered the entire product development lifecycle. We’re prepared to help any product team identify and leverage best-fit materials and methods to ensure that desired results are always achieved — at a competitive price point and on a rapid timeline. Contact us today to get started.

Category: Knowledge CenterTag: CNC Machining

Related Articles

PC-ABS

Know Your Materials: Polycarbonate (PC)

HDPE-and-LDPE

Know Your Materials: Low-Density Polyethylene vs High-Density Polyethylene

CNC

The Ultimate CNC Machining Guide

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

CNC

Key Differences for Acrylic and Polycarbonate Machining

Large vs Small Part

Large vs. Small Part CNC Machining: How to Overcome Common Challenges

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (727) 384-3676

Copyright © 2024 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy