• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge On-Demand
    • SyBridge Studio
    • SyBridge Digital Platform
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
GET AN INSTANT QUOTE
Home / Resources / Know Your Materials: TPE vs. TPU

Know Your Materials: TPE vs. TPU

November 12, 2020 by SyBridge Technologies
TPE-vs.-TPU

Previously published on fastradius.com on November 12, 2020

When product designers and engineers want a part to have certain properties like shock absorption or high impact strength, they often turn to polymers made out of thermoplastic elastomers.

Thermoplastic elastomers are a class of polymers that have both thermoplastic and elastomeric properties, meaning they’re heat-resistant and durable, but still flexible. Since thermoplastic elastomers can be melted and reshaped without compromising the material’s chemical or mechanical properties, the scrap can even be re-used as a partial replacement for virgin plastic. Parts made from this material can be manufactured using a variety of processes, including extrusion, injection molding, and blow molding.

TPE (thermoplastic elastomer) and TPU (thermoplastic polyurethane) are among the most popular categories of thermoplastic elastomers — and while many use the terms interchangeably, they have some key differences. For starters, TPEs are a category encompassing a wide variety of thermoplastic elastomers while TPU only refers to a smaller subset. TPU is also newer to the manufacturing industry than TPE.

Here’s a comprehensive breakdown of the key differences between the terms TPE and TPU, and what aspects of these to take into consideration when making a material selection.

An Overview of TPE

TPE, also known as thermoplastic rubber, combines the look and feel of standard rubber with the ease of use of a plastic. This large category covers a wide range of polymers including TPU, thermoplastic copolyester (TCP), and thermoplastic polyamine (TPA). This material is known for its elasticity, processability, recyclability, high melting temperature, and resistance to weathering.

The mechanical specifications for each kind of TPE will vary by brand. For example, the mechanical specifications for the K2702 thermoplastic elastomer from Kent Elastomer Products  include:

  • Shore A hardness: 29A
  • Tensile at break: 1100 psi (7.6 MPa)
  • Elongation: 950%
  • 300% modulus: 175 psi (1.2 MPa)
  • 500% modulus: 330 psi (2.3 MPa)
  • Operating temperature: -40 to 195°F (-40 to 91°C)

TPE is the polymer of choice for any application that must be soft to the touch and feature good elastic or non-slip properties. They are also ideal for applications in which a part must conform to a companion part. Common commercial uses for TPE include pencil grip handles, grips for hockey sticks, toys, and ski boots. In the medical industry, TPEs can be found in resuscitator parts, connectors, and mouthpieces. In the automotive industry, TPE is used in weatherproof seals, floor mats, interior and exterior parts, airbag covers, and bumpers.

In the automotive industry, TPE is used in weatherproof seals, floor mats, interior and exterior parts, airbag covers, and bumpers.

TPEs offer numerous advantages over comparable plastics, including conventional rubber materials. TPEs are faster to process and have shorter fabrication times than rubbers, which reduces the final cost of the finished part. Shorter molding cycles also boost energy efficiency. In comparison to TPU overall, TPEs can be more elastic.

TPEs do have a few limitations that product teams should keep in mind. For example, TPEs have been known to melt at extremely high temperatures and should only be used for parts whose uses will subject it to temperatures within the manufacturer’s specified temperature range. TPEs generally perform worse under heavy loads and have less chemical and temperature resistance than traditional thermoset rubbers. Also, most TPE materials must be dried prior to processing, so designers must be careful not to forget this crucial step.

An Overview of TPU

Thermoplastic polyurethane (TPU) is the subset of strong, multi-purpose thermoplastic elastomers that are known for their durability, flexibility, and suitability for numerous high-performance applications. Like other TPEs, this material has properties of both thermoplastics and conventional rubbers, but TPU offers superior load-bearing capacity, high elongation at break, and excellent tensile strength. TPUs also stand up well to chemicals, oils, greases, and other common solvents.

Mechanical specifications for TPU will vary. The mechanical specifications for Ultrafuse TPU 85A include:

  • Shore A hardness: 90A
  • Density (printed and conditioned): 1082 kg/m3
  • Glass transition temperature: -44 °C
  • Abrasion resistance: 82 mm3
  • Tensile strength (at 100% elongation, XY direction, conditioned): 8.7 MPa
  • Tensile at break (at XY direction, conditioned): 34 MPa
  • Modulus of elasticity (at XY direction, conditioned): 20MPa

TPU can be found in a wide cross-section of industries, from automotive, to agriculture, to textiles. The material’s unique combination of scratch and abrasion resistance makes it an excellent material for manufacturing automotive interior parts like gear knobs, instrument panels, or console parts. Its flexibility and breathability make it well-suited for sports apparel and athletic shoes. Some engineers have also developed niche TPUs to meet the increasing demand for high-performance polymers with low compression sets, abrasion resistance, and oil resistance for seals and gaskets.

TPU’s flexibility and breathability make it well-suited for sports apparel and athletic shoes.

Compared to polyvinyl chloride (PVC), TPU is lighter, more elastic, and more abrasion-resistant. It’s also possible to color and process TPU. It makes sense to choose TPU over PVC from an environmental standpoint because this material is recyclable and frequently used to lower carbon emissions. Also, TPU outpaces most other TPEs in a few key ways. TPU is generally harder, more durable, and more shrink-resistant than most TPEs — plus it is easier to print with and generally promises more accurate results.

On the other hand, however, TPU is more expensive than comparable plastics and some grades of TPU have a relatively short shelf life. Like other TPEs, TPUs must be dried prior to processing. Additionally, TPUs generally have a narrower hardness range than other thermoplastic elastomers and a narrower temperature range for processing, creating certain manufacturability limitations.

Getting Started With TPE and TPU

TPE and TPU are versatile plastics that all product teams should have in their repertoires. However, product teams should be warned not to conflate the two materials. TPEs, a large category of polymers that can be classified as thermoplastic elastomers, are softer than TPU and better suited for applications that must be soft to the touch. TPU, on the other hand, is the subset of TPEs that are tougher and better suited for high-performance applications that require high chemical and abrasion resistance. Product teams must always do thorough research and vetting to ensure they’re choosing the right material for their project. Luckily, an experienced manufacturing partner can make the material selection process much simpler.

When companies partner with SyBridge, they partner with a team of on-demand manufacturing experts who have years of experience bringing products to life using both traditional and additive manufacturing methods. Our team of designers, engineers, and advisors can guide product teams through the material selection process seamlessly, and ensure they always make the right choice — so they can focus on delivering superior products each and every time. Contact us today to get started.

Category: Knowledge CenterTag: Materials

Related Articles

UHMW

Know Your Materials: UHMW

PET

Know Your Materials: Polyethylene Terephthalate (PET)

Urethane Casting

A Breakdown of Common Urethane Casting Materials: Silicones, Elastomers, and Rigid Urethanes

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Material Data Sheets

Decoding Material Data Sheets

SLA-Tough-Resin

Know Your Materials: SLA Tough Resin

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (727) 384-3676

Copyright © 2024 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy