• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
SyBridge Technologies

SyBridge Technologies

Bridging the gap between innovation and mass production

  • Capabilities
    • Design & Engineering
    • Rapid Prototyping
    • Tooling
    • Advanced Manufacturing
    • Supportive Injection Molding
    • Reliability Services
  • Technologies
    • 3D Printing
    • Urethane Casting
    • CNC Machining
    • Injection Molding
    • Manufacturing Intelligence
    • SyBridge On-Demand
    • SyBridge Studio
    • SyBridge Digital Platform
    • SyBridge Connect
  • Industries
    • Life Sciences
    • Health & Beauty
    • Consumer Products
    • Aerospace
    • Mobility & Industrial
  • Resources
    • Material Selector
    • Press Room
    • Knowledge Center
    • Events
  • About Us
    • Evolution
    • Sustainability
    • Careers
  • Contact
    • Locations
GET AN INSTANT QUOTE
Home / Resources / An Intro to CNC Machine Programming

An Intro to CNC Machine Programming

January 7, 2021 by SyBridge Technologies

Originally published on fastradius.com on January 7, 2021

CNC machining is a traditional manufacturing process that employs cutting tools and drills to systematically remove material from a workpiece to create a finished part. The machine receives toolpaths to cut the piece, typically in G code. The code for the machine can either be manually written, conversationally written at the machine, or output by a post processor from a computer aided manufacturing software (CAM). The process is fast, versatile, repeatable, and highly reliable thanks to the automation that computer numerical controls (CNC) provide.

Since computer software controls the CNC machine and the final outcome of the part, proper CNC machine programming is essential. Poor programming can lead to tolerance issues, poor surface finish, premature tool breakage, and a host of other issues. To ensure consistent results every time, operators and programmers must first grasp the basics.

The Basics of CNC Machine Programming

There are three basic CNC machine programming methods — manual, conversational, and CAM system programming. With manual programming, the operator inputs code manually, which can be time-consuming and somewhat tedious. It also requires intimate knowledge of the programming language. However, manual programming is a valuable foundational skill set to have on hand, and it’s an effective way to make quick modifications to CAM outputs and optimize code.

Conversational or “shop-floor” programming is an increasingly popular method that involves graphic and menu-driven functions. Operators input commands directly into the CNC machine, just like in manual programming, which alleviates potential issues that may arise from poor post processors in CAM. CAM system programming is similar to the conversational method, but more advanced. With a CAM system, the software provides an advanced GUI with tool path strategies to help the operator prepare and generate the program — eliminating the need for any manual programming —  and transfer it directly to the CNC machine.

All of these CNC machine programming methods involve G-code and M-code. G-code is the programming language that instructs the CNC machine what to do, facilitating accurate and repeatable parts. M-code controls all of the miscellaneous CNC machine functions, such as spindle rotation start and stop. M-codes are customizable and vary by machine, so operators and programmers must double-check they’re inputting the right functions before they start machining.

Here are four CNC machine programming tips that operators should know:

4 Essential CNC Machine Programming Tips

1. Take time to revisit the basics

The best CNC programmers, operators, and machinists ensure they have mastered the fundamentals before starting any project. For manual and conversational programming, operators should check their math to ensure they’re programming the right specs into the CNC machine.

Just like carpenters, it’s best for programmers to “measure twice and cut once.”

During this preliminary phase, programmers should also remember that CNC software isn’t infallible. For example, most CNC machine programs plot curves and circles as a series of chords instead of a truly curved surface, which can impact any curved lines in the master pattern. A CNC machine program is only as precise as its underlying math, and it never hurts to double check one’s work.

2. Customize CNC machine feed rates

In any high-volume CNC project, operators spend a lot of time dialing in a program to ensure that it runs smoothly, efficiently, and consistently. Once this has been accomplished and the program is locked, operators can “set it and forget it.” However, customizing certain aspects of CNC machine programming can optimize manufacturing.

For example, every single line of code that the CNC machine runs calls out a speed and a feed. If an operator commands a spindle on without making an accompanying speed command, the machine will revert back to its last RPM. The same principle applies to feed rates. During the early stages of any project, operators should be prepared to adjust their feed times based on how well the finished product turns out, and any other relevant data.

3. Understand CNC machine compensation types

Compensation is simply allowing and accounting for unpredictable variations to occur. An operator can input their CNC milling machine programming codes perfectly or calculate which values should yield the perfect part, but they won’t be able to confirm the accuracy and precision of their programming until machining is complete. There are a number of variables that are difficult to account for that may impact results. Tool pressure, for instance, may affect the final product, even when all other initial adjustments and calculations are correct.

Operators should be aware of the most common compensation types and account for them during programming. Compensations can be input manually or programmed using automatic pre-setter tools within the CNC machine. Machining compensation types include tool length compensation, cutter radius compensation, tool wear, and fixture offsets. With each adjustment and compensation, machining becomes more precise.

4. Seize opportunities to simplify CNC machine programming

G-codes are standard for almost all CNC machining programs; however, it can be time-consuming to program operations one by one. Operators can dramatically shorten the programming of hole-machining operations by using canned cycles.

Canned cycles only require one block per hole, regardless of machining style, and once the operator inputs a canned cycle, they can machine additional holes by re-programming the coordinates of the hole only. Codes like G83 save time, reduce errors, and make CNC machine programming easier across the board.

An Expert Manufacturing Partner for Better Results

These essential tips provide an excellent foundation for creating clean and functional CNC-machined parts, but they represent just a fraction of what great manufacturing entails. For manufacturers just getting started in CNC machining, negotiating CNC milling machine programming codes and mastering machine programming best practices can seem overwhelming.

An expert manufacturing partner like SyBridge can ease the burden. Our team of seasoned designers, engineers, manufacturers, and technologists have decades of experience in designing, prototyping, and manufacturing superior CNC-machined parts. With our own fleet of in-house machines, we are expert CNC machine programmers. Our team is prepared to manufacture on-demand CNC-machined parts in a fraction of the time and at a fraction of the cost of other vendors. Contact us today — let’s make new things possible.

Category: Knowledge CenterTag: CNC Machining

Related Articles

CNC Machining

A Brief History of CNC Machining Technology

CNC Machining

The 4 Biggest Design Mistakes for CNC

Lightweighting CNC

Composites and the Secret to Lightweighting CNC Machined Parts

CNC

Designing With Efficiency in Mind: How to Streamline CNC Machining Processes

Polyoxymethylene (POM), more commonly known as acetal or its branded name Delrin®, is an engineering plastic offering low friction, high stiffness, and excellent dimensional stability. Polyoxymethylene is a category of thermoplastics and includes many different formulations of the material, all of which vary slightly. As such, it’s important to learn as much as you can about each type before choosing one for your next project. Delrin® is a semi-crystalline engineering-grade thermoplastic widely used to create highly precise parts. In general, Delrin® provides impressive dimensional stability and sliding properties. It’s known for its high strength, wide operating temperature range (-40°C to 120°C), and excellent mechanical properties. Here’s everything you need to know about this material, from how it’s made to its best-fit applications. Inside the polyoxymethylene production process Acetal was first discovered by German chemist Hermann Staudinger in 1920 before it was commercially synthesized by research chemists at DuPont, the original manufacturers of Delrin® plastic, in 1956. Like all other plastics, acetal is created by distilling hydrocarbon fuels down into lighter groups called “fractions,” which can then be combined with other catalysts via polymerization or polycondensation to produce a finished plastic. To make an acetal homopolymer like Delrin®, anhydrous formaldehyde must be generated by causing a reaction between aqueous formaldehyde and alcohol to form a hemiformal. The hemiformal is then heated to release the formaldehyde, and the formaldehyde is polymerized by anionic catalysis. The resulting polymer is stabilized when it reacts with acetic anhydride, which creates polyoxymethylene homopolymer. Acetal comes in many different commercial varieties and formulations, each with its own advantages and disadvantages. For example, Delrin® 500 is medium-viscosity, all-purpose polyoxymethylene that has a good balance of flow and physical properties. It can be used to produce parts via CNC machining and injection molding and is frequently used to manufacture mechanical parts, fuel systems, and fasteners. Delrin® 1700P, on the other hand, is a very low- viscosity, fast-molding resin that is best suited for parts with complex shapes, thin walls, long flow paths, or multi-cavity tools. It also offers the best molding thermal stability for deposit-free molding in demanding conditions. Since there are dozens of different formulations of acetal, it’s important to do your research and make sure your prospective plastic offers all of the properties you need for your application. Delrin® plastic properties and mechanical specifications small black Delrin pieces Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. Acetal’s excellent mechanical properties make it extremely versatile, offering a unique blend of properties that you won’t find in most metals or other plastics. Delrin® plastic is strong, rigid, and resistant to impact, creep, abrasion, friction, and fatigue. It’s also well known for its excellent dimensional stability during high-precision machining. Acetal can also stand up to moisture, gasoline, solvents, and a wide range of other neutral chemicals at room temperature. From a design standpoint, parts made with extruded POM naturally have a glossy surface finish. Since acetal is compatible with CNC machining, injection molding, extrusion, compression molding, rotational casting, and more, product teams are free to choose the manufacturing process that works best for their budget and their needs. However, it’s worth noting that Delrin® plastic is typically very challenging to bond. Acetal material properties vary by formulation, but the mechanical properties for Delrin® 100 NC010, one of the most popular formulations, include: Tensile modulus: 2900 MPa Yield stress: 71 MPa Yield strain: 26% Density: 1420 kg/m3 Charpy notched impact strength, +23°C: 15 kJ/m2 Coefficient of linear thermal expansion, normal: 110 E-6/K Water absorption: 0.9% Delrin® does have a few limitations. For instance, even though Delrin® is resistant to many chemicals and solvents, it’s not very resistant to strong acids, oxidizing agents, or UV radiation. Prolonged exposure to radiation can warp the color and cause the part to lose its strength. Also, this material isn’t readily available in a flame-retardant grade, which limits its utility for certain high-temperature applications. Why choose Delrin® plastic? These limitations notwithstanding, there are many reasons to choose acetal over other materials. When compared to other plastics, acetal offers better creep, impact, and chemical resistance, better dimensional stability, and higher strength. It also has a lower coefficient of friction. Acetal outpaces certain metals as well. Parts built with this material have a higher strength-to-weight ratio, better corrosion resistance, and offer more opportunities for part consolidation. You can build thinner and lighter parts faster and at a lower price point with acetal than with a comparable metal. Delrin® plastic can be found in almost every major manufacturing sector. In the automotive industry, common applications include heavy load-bearing gears, fuel system components, loudspeaker grilles, and safety system components like seatbelt hardware. Delrin® can also be found in all-purpose industrial equipment like bearings, gears, pumps, and meters. In the consumer goods and appliances space, this material can be used to make anything from zippers and pens to knife handles and lawn sprinklers. Getting started with Delrin® There’s a lot for product teams to love about Delrin®. It’s strong, stable, versatile, and its excellent mechanical properties make it a good choice for a wide variety of applications in a number of industries. However, with dozens of different formulations of acetal on the market, it can be very challenging to determine which one might be the best fit for your unique project. A seasoned manufacturing partner can help demystify the material selection process. When you partner with Fast Radius, you partner with a team of on-demand manufacturing experts who have years of experience helping product teams navigate material selection. We’re well-versed in the wide range of materials that can be used for both traditional and additive manufacturing — including Delrin®. Once you’ve selected the Delrin® formulation that’s the right fit for your application, our team of experts can help facilitate the entire manufacturing process — from design and prototyping to production and fulfillment. With a full suite of manufacturing services including CNC machining and injection molding, Fast Radius can bring your vision to life quickly and easily. Contact us today to get started.

Know Your Materials: Delrin (Polyoxymethylene)

Chemical finishes

A Guide to Chemical Finishes for CNC Machined Parts

Ready to discuss your next project?

Connect with an expert

We Bring Ideas to Life

  • LinkedIn
  • Facebook
  • Instagram
  • YouTube

Global Headquarters

265 Spring Lake Drive
Itasca, IL 60143 USA

info@sybridge.com

+1 (727) 384-3676

Copyright © 2024 · Return To Top

  • Legal Information
  • EULA
  • Terms and Conditions​
  • Accessibility​
  • Privacy Policy
  • Sustainable Purchases Policy